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Chapter 2 0 

Determining the Service Life 
Cycle of Computers 

Theodore Modis and Alain De becker 

2 0.1 Introduction 

Nowadays most people in business are familiar with the application of lo- 
gistic growth to the sale of products even if they ignore its mathematical 
formulation. They all use a bell-shaped curve to refer to  a product’s life 
cycle. The corresponding S-curve, for a product’s cumulative sales, is also 
something with which they feel comfortable. 

Business people are, however, less in tune with the mortality of their 
products. Hardware maintenance contracts for computers closely follow sys- 
tems sales. At the beginning the number of contracts increases at  the same 
rate as sales, but instead of the familiar S-curve, contracts reach a peak and 
then slowly start declining as machines become old and obsolete. In Figure 
20.1 we see the familiar forms: the sales life cycle, the corresponding S-curve 
of cumulative sales, and the less familiar service life cycle. Notice that the 
last graph peaks only after the product has completed its sales life cycle. 
Qualitatively the business world is aware of the service life cycle. They refer 
to it as the product’s end-of-life curve. Quantitatively, however, they fall 
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Figure 20.1. (a) Life cycle of sales, (b) Cumulative number of sales, (c) 
Number of active service contracts at  a given time. 

short of being able to predict when the product will peak and at what rate 
revenue will decline afterwards. 

The life cycles of products are becoming shorter. A specific computer 
model used to  sell for 4-5 years in the 1970s; they now only sell for 1-2 
years. Service life cycles have been known to last for 12-14 years. By how 
much are they going to decrease in the future? 
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A recent article in the Harvarri Business Review addresses this question 
(Potts, 1988). Graphs and figures liven lip the discussion, but the treatment 
remains qualitative and rather pictorial. It corroborates the intuition but 
does not help with quantitative forecasts. Determining the service life cycle is 
interesting for other reasons besides the ever-increasing importance of service 
revenue. It provides knowledge of the installed base, its actual and future 
size, which is crucial in marketing strategies for add-ons (follow-up sales in 
terms of accessories, upgrades, etc.), software, and a variety of services. This 
is why we propose a quantitative approach for determining a product’s life 
span as opposed to its sales life cycle only. 

20.2 Logistic Diffusion 

Logistic growth formulated in the Volterra-Loth equations accurately de- 
scribes situations where a niche is being filled under natural competition, be 
it an ecological or a market niche. The situation becomes more complicated 
when one is interested in tracking down the survivors of a generation over 
time. The total number of units sold of a particular product increases with 
time reaching its ceiling at the end of the product’s life cycle. The number of 
products in use, however, never reaches the same ceiling as there is a certain 
mortality among the products sold. Out of a hundred units sold in month 
one, 98 may be still “alive” a year later but only 50 in five years time. This 
erosion comes from aging and obsolescence, and sets in right from the be- 
ginning. While populations grow happily along their S-shaped birth curve, 
they are at any point in time subject to a certain mortality. 

Mathematically the case calls for a convolution function. The folding 
of logistic growth with a mortality function. What shape should the latter 
have? Sales follow a logistic growth, namely the rate of sales over time, P(t) ,  
proceeds along a bell-shaped curve of the form: 

(20.1) 

where M ,  a and to are constants. To introduce mortality we begin with the 
simplest possible assumption of a constant percentage decay rate, in other 
words an exponential decay: 

- -- - -k 1 dR(Z1) 
R(v) du 
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Figure 20.2. Above: life cycle outlining sales of service contracts and 
exponential mortality rates over a five-year period. Below: the integrated 
number of contracts with finer time bins (trimesters). The overall envelope 
represents total survivors a t  a given time. 

where R(v) is the remaining contracts of age u, and k is a constant. The 
convolution function is given below and graphically it is shown in Figure 
20.2. 
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(20.2) 

When we first applied this formulation to real data we obtained good 
results, particularly for old products for which the sales life cycle had finished 
years ago and service contracts were already beyond their peak and declining. 
However, two difficulties soon emerged. One was related to  relatively young 
products where the rate of decay was so low that it implied they would 
be around for a very long time. This fact contradicts the increasingly.rapid 
cycling of products witnessed in the computer industry. The second difficulty 
was more revealing. When tracking decay rates in a number of areas we 
found that they were not constant over time. These observations prompted 
us to raise the level of sophistication for mortality, i.e., to try a second degree 
function for the decay rate: 

- -- dR(u)  - a R(u)  + b 
R(u)  du 

where a and b are constants. Setting N = -b/a we can rewrite this expres- 
sion as 

dR 
du 
- = -a R(N - R )  (20.3) 

which unveils the logistic nature of the assumed form. Furthermore, we 
can eliminate one constant by setting N = 1.0 since the mortality ceiling is 
100%. 

We have now arrived at  a logistic mortality, however, it was not en- 
tirely circumstantial. An older study on the appearance and survival of 
supertankers had revealed to us an exemplary S-shaped mortality for that 
“species”. In addition, Marchetti has investigated human mortality (Mar- 
chetti, 1990) and has also established logistic laws for the process. However, 
what is important is that the logistic mortality better fits the data on com- 
puter service contracts we were trying to describe. The new convolution 
function described below involves five parameters, three from the logistic 
growth of contract “births”, equation (20.1), and two from the logistic mor- 
tality, equation (20.3), (uo is an integration constant). This is graphically 
depicted in Figure 20.3. 
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Figure 20.3. Above: life cycle outlining sales of service contracts and 
logistic mortality rates over a five-year period. Below: the integrated number 
of contracts with finer time bins (trimesters). The overall envelope represents 
total survivors at  a given time. 
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20.3 Applications .. 

Using equation (20.4) in forecasting or business planning implies that the 
five parameters have to be determined. To do this experimentally one needs 
at least five measurements - monthly or quarterly data points on active con- 
tracts. In order to limit the uncertainties involved in logistic fits one must 
have many data points. Consequently parameter determination becomes a 
fitting procedure where the five unknowns are to be determined from many 
more than five data points. The procedure we used is one of a X 2  minimiza- 
tion. The X 2  is formed as follows: 

(20.5) 

where D is the data array, Q from equation (20.4), w a series of weights to 
be supplied, and i the index of time bins. 

A function minimization program was used to search for the values of 
the five parameters. The weights were usually taken to be uniform, but in 
some cases they were adjusted through business knowledge. An example is 
shown in Figure 20.4. For this older computer model, even though we are 
missing the early data, we have enough points (monthly data for six years) to 
make a reliable determination. In fact, by ignoring the most recent year, the 
last 12 points from the fit have a negligible effect on the parameter values. 
Repeating the operation, i.e., dropping the last 24 points, still replicates 
closely the parameter values originally found. In conclusion, we can say that 
as long as the historical data go far enough to hint at the decline beyond the 
peak, the parameter determination shows a remarkable stability. 

We did, however, encounter two unexpected difficulties. 

20.3.1 Young products 

The first difficulty involved young products, i.e., products for which the 
historical data have not yet reached the peak. In these cases a 4- or 5- 
parameter fit, involving equations (20.2) or (20.4) respectively, produced u 
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Figure 20.4. Monthly data and fit for the hardware service contracts of an 
old computer model. Each point represents the number of active contracts 
at the time. The fit (solid line) is based on the data up to the end of 1985, 
two years before the end of the historical window. The dotted line is the 
extrapolation of the convolution function determined from the fit. 
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Figure 20.5. Trimesterly data and fit for the active contracts of a recent 
computer model. The fitting program yielded a null mortality (dotted line). 
The solid line suggests the realistic evolution taking mortality into account. 

null mortality most of the time. The best fit found by the program would be 
a simple logistic growth with zero mortality. This was seen in terms of the 
fact that the difference between contracts sold and contracts active was very 
small in the early days of a new product. The program could not determine 
mortality parameters if a simple 3-parameter growth logistic could describe 
the data just as well (see Figure 20.5). Although this is a comforting feedback 
on the robustness and stability of the parameter determination method, it 
precluded the determination of contract mortality for young products. 

At the same time it inspires a resolution to the problem through factor- 
ization. We adopted a two-step procedure. First we fit the contract sales 
data, i.e., the appearance of new contracts, to a simple 3-parameter logistic. 
Once we determine the ceiling this way, we fit the active-contract data to the 
convolution function (20.2) or (20.4), but this time with the maximum A4 
fixed at  the value already determined from the sales fit. Clearly the proce- 
dure demands knowledge of the “birth” of contracts as well as the contracts 
active at  a given time. 
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20.3.2 Speeding up the computation 

The second difficulty concerned the computer time required. Working for a 
computer company one is often spoilt because there are usually unlimited 
computing resources. Nevertheless, human nature is such that having does 
not quench greed. When we realized that the minimization of a Xz involving 
the convolution of two logistic functions, with five parameters needing to be 
determined, required more than a few minutes of real time computing, we 
found the situation unacceptable. Rather than searching for programming 
tricks to reduce the computing time we adopted a mathematical trick. The 
calculation of the exponentials involved in the logistic expression takes a long 
time to calculate. Logistic growth, however, can also be obtained through a 
simple hyperbola and the recursive relation (Meade, 1985): 

(20.6) 

where a and 6 are constants and the third constant is the starting value 2,. 

The new approach then is to construct an array, element by element, 
using relation (20.6) and a similar one for mortality with two parameters only 
(the starting value is taken close to loo%, representing mortality at age zero). 
The five parameters are then determined by using the minimization program 
to best match the constructed array to the data, the active contract array is 
shown at the bottom of Figure 20.6. Whenever the data are available in this 
way, in the full diagonal matrix form, a further factorization becomes possible 
and mortality can be determined independently from each line (across), while 
sales keep growing along their life cycle (down). 

20.3.3 

It is common knowledge that the usefulness of a generation of computer 
models decreases with time not because of aging, e.g., material fatigue re- 
sulting in frequent breakdowns, but due to obsolescence. Computer models 
do not drop out of use individually like used cars. They phase out together 
as their technological generation becomes outdated. 

This phenomenon is confirmed here in a formal way. From Figure 20.3 
we see that the number of models in operation declines logistically from the 
day of sales. The end-of-life point, taken as the 1% of sales that remains 
at a certain date, is reached at approximately the same date for all models. 
People who bought the very first models will keep them for up to 16 years. 
Those who bought the last few models sold say six year later, will only 

Phasing out as a generation 
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Figure 20.6. The full matrix of contracts for a hypothetical model. The 
diagonal elements represent initial contract sales. Projected vertically on the 
left they give rise to the life cycle. Each horizontal array displays mortality 
over time. The bottom line represents active contracts as a function of time. 

keep them ten years. This generation of computers had a sales life-cycle 
of six years and a service life-cycle of 16. Perhaps unfairly, the models 
fabricated last, even though perfected and more reliable are endowed with 
shorter life times. 
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20.4 Conclusion 

Unlike cumdative product sales, service contracts display a mortality over 
time. Computer service contracts are best described and forecast through 
the use of a convolution function of two logistics: one representing the growth 
of contract sales (three parameters) and the other representing contract mor- 
tality (two parameters). 

For young products it is recommended to factorize the process into two 
fits, births of contracts first and active contracts afterwards. To keep com- 
puting time within convenient limits, one should use a recursive hyperbolic 
relationship instead of the analytic function involving exponentials. 

Computer models in operation phase out independently of the date they 
were sold. As their technological generation becomes obsolete, early sales 
and late sales all drop out of use at the same time. 

Beyond hardware service revenue forecasts, the approach offered here 
helps determine the strategically important installed base which is the mar- 
ket for add-ons, software, and a multitude of other services. 
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