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ABSTRACT

Look-up tables and graphs are provided for determining the uncertainties during logistic fits, on the three

parameters M, a and , describing an S-curve of the form:

M
1+Si) =

€

The uncertainties and the associated confidence levels are given as a function of the uncertainty on the data
points and the length of the historical period. Correlations between these variables are also examined; they make
"what-if" games possible even before doing the fit.

The study is based on some 35,000 S-curve fits on simulated data covering a variety of conditions and carried
out via a x minimization technique. A rule-of-thumb general result is that, given at teast half of the S-curve
range and a precision of better than 10% on each hitorical point, the uncertainty on M will be less than 20%
with 90% confidence tevel.

Introduction
S-curve logistic fitting has been successful in describing learning and/or growing

processes. A variety of applications ranging from biology (echo-niche filling of species)
to art and industry (market-niche filling of products) abounds in the literature [1-4].

The most facinating aspect of S-curve fitting is the ability to predict from early
measurements the final maximum, a fact that often shocks and sometimes vexes individu-
als, with its inherent element of predeterminism. This very fact, however, constitutes
also the fundamental weakness and the major criticism in S-curve fitting, namely the
uncertainty involved in an early determination of the final maximum. A three-parameter
logistic fit can sometimes accomodate wildly different values for the final maximum.
Obviously, the more precise the data and the more of the S-curve range they cover, the
more accurate the determination of the final maximum but, unfortunately, at the same
time, the less interesting this determination becomes.

The need for quantitative determination of the uncertainties resulting from such fits
has not been adequately addressed up to now. In this work a study was undertaken to
quantify the uncertainties on the parameters determined by logistic S-curve fits.
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In the next (second) section the logistic equation itself is described and the adopted
approach justified. In the third section the generation of the simulated data and the fitting
procedure are given. The fourth section gives the results in the form of look-up tables
and figures. Conclusions are presented in the final section.

Logistic Growth
Growth in a biological context has been described successfully by the Voltera differ-

ential equation [5]:

g(t) = ~ gd)a
M

where a and M are constants characterizing the rate of growth and the final size respec-
tively.

The solution of this equation gives a typical S-curve

M
UD = (1)

where ¢, is an integration constant localizing the process in time.
Now given a set of date {(4, g) i = 1,. . and considering as one observation

of the discrete random variable Q(1,), the quantity
-

Eau)
where: E(Q(t)) is the expectation and

Q)
0(Q(t)) o(Q(t,)) the variance

a(te+1

n

'sl (*
U

yields a x' distribution if Q(t) is normally distributed for each i.
To fit the data points to a certain analytic form we must define the expected values

E(Q(t)) of the random discrete variable Q(t) according to the law in question and then
the variance o(Q(t) around these expected values. It is shown in the appendix that for
a logistic S-curve, Q(#) obeys a binominal law @(M,/), where

1f= att@1+ ta)

and that its expectation and variance are:

E(Q()) = =5
Mo(Q()) = MA - f) =

(1 + + 10)a(t 1e

To the extent that M is large and O < q(t) < M, Q(4 will be normally distributed
and (2) will approximate a y' distribution with n - 3 degrees of freedom. This condition is
reflected in the usually applied rule-of-thumb where normal distributions are assumed for

0.1<-<0.9I<
M

In this range, then,minimization of (2), i.e., setting its gradient to zero, will determine
the values of the three parameters M, and ¢,. At the same time the matrix of the second
partial derivatives allows, in principle, the determination of the standard deviations-
errors-on the values of the parameters and the corresponding confidence levels.

a
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Fig. 1. (a) S-curve typical of population growth. (b) Time derivative of (a) typical of life cycle.

However, in our case, determination of confidence levels and errors by the above
method is not suitable. It implies exceedingly complicated calculations and it is likely to

give biased results in the case where the three parameters are corrclated between them
in anonlinear way. Furthermore, it is not applicable to the extent that the three parameters
are not normally distributed.

Therefore, anumerical approach was adopted for thedetermination of the confidence
levels and uncertainties involved in the parameter values found by the y' minimization.
A large number of fits were carried out on simulated data statistically deviated around
the theoretical value and covering a variety of time spans. Distribution for the values of
the three parametersM, a and ¢,wereobtained through a x'minimization, and comparison
with the theoretical values used in generating the data, provided a means for establishing
uncertainties, confidence levels, systematic biases (if any) and correlations between the

three parameters.
An a posteriori justification for adopting the numerical approach can be found in

Figure 7 where indeed strong nonlinear correlations are witnessed, and in Figure 3 where
deviations from distributions are evident.

Generation of Simulated Data and Fitting Procedure
An S-curve, Figure 1(a), represents the cumulated growth as a function of time,

e.g., the population of a species at time t or the total number of units of a certain model

produced by a manufacturer up to time t, etc. The data, however, are most frequently
available in terms of the rate of growth, the time derivative of the S-curve, Figure 1(b);
typical examples are reproduction rates, productivities, units sold per trimester, etc.; in
other words, life cycles.

The simulation data were therefore generated according to the time derivative of
equation (1), namely

M
(1+ te)

Q(t) = (3)

where, without loss of generality here, we take M = 1, a = 1 and ¢, = 0,i = 1 to 20,
defining 20 equal time bins 4. The time span ~ f was chosen such that it covered a
certain portion of the complete S-curve. Nine distinct cases were considered, namely:

a(t M1 +

N
f,

q(t) in the range of 1% to 20% of M
q(t) in the range of 1% to 30% of M
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TABLE 1

Expected uncertainties on fitted parameters for the range 1%-20% as a function of
confidence level (vertically) and error on historical data (horizontally).

Parameter: M 1 5 10 15 20 25

70 4.9 22 $1 120 190 290
75 5.9 27 0 150 230 360
0 6.8 32 72 10 280 430
85 8.6 37 2 250 360 8
0 il 8 10 300 4 720
95 15 65 160 8 4
99 65

Parameter: a l 5 10 15 20 25

70 0.5 2.6 5.2 78 9.0 12
75 0.6 3.0 5.8 8.2 11 13
0 0.8 3.5 6.5 9.5 i 15
85 0.9 3.9 7 10 13 16
0 1.1 4.5 8.1 11 14 19
95 1.7 5.2 9.2 13 17 21
9 3.5 7.2 1] 16 2i 28

Parameter: ¢, 1 5 10 15 20 25

70 0.064 0.30 0.61 1.) 1.3 1.7
7§ 0.808 0.35 0.70 1 1.5 1.8
0 0.089 0.40 0.80 1.3 1.6 2.0
85 0.11 0.46 0.90 1.5 1.8 2.1
0 0.15 0.53 1.7 2.0 2.4
95 0.20 0.70 1.3 1.9 2.2 2.6
9 0.60 2.3 1.6 3.4 2.9 3.2

1

All numbers are in % except the uncertainties on /,; see text.

TABLE 2
Expected uncertainties on fitted parameters for the range 1%-30% as a function of

confidence level (vertically) and error on historical data (horizontally).
Parameter: M l 5 10 15 20 25

10 2.7 13 28 47 69 10
75 3.2 15 32 53 81 10
80 3.9 17 36 62 110 4
85 4.8 19 41 71 130 370
0 5.9 22 48 110 210 470
95 8.5 29 6 140 350 820
99 8 49 180 350 690

Parameter: @ 1 5 10 15 20 25

70 0.4 1.9 4.5 6.3 8.1 9.9
75 0.5 2.2 5.0 6.8 8.8 i
0 0.6 2.6 5.7 7.4 9.9 12

85 0.7 2.9 6.0 8.1 | 13
0 1.1 3.4 6.7 9.4 12 15

95 1.3 4.0 8.3 1] 15 17

9 3.2 5.6 10 16 19 24

Parameter: ft 1 5 10 15 20 25

70 0.041 0.18 0.39 0.87 0.80 1.1

75 0.048 0.21 0.43 0.65 0.89 1.3
0 0.057 0.24 0.49 0.73 1.0 1.5
85 0.067 0.27 0.56 0.88 1.2 1.8
0 0.081 0.32 0.64 0.99 1.5 2.0
95 0.12 0.39 0.77 1.2 1.8 2.3
99 0.45 0.62 1.3 1.9 2.2 3.0

All numbers are in % except the uncertainties on f,; see text.
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TABLE 3
Expected uncertainties on fitted parameters for the range 1%-40% as a function of

confidence level (vertically) and error on historical data (horizontally).
Parameter: M 1 5 10 15 20 25

70 1.9 78 16 26 39 54
75 2.2 8.5 18 29 4% 63
80 2.5 9.7 20 34 53 86
85 2.9 1] 23 42 61 110
0 3.6 13 28 50 77 140
95 5.0 17 35 61 150 210
99 6.5 22 55 140 330 470

Parameter: a 1 5 10 15 20 25

70 0.4 1.7 3.5 5.3 7.3 9.7
75 0.4 2.0 3.9 6.0 77
80 0.4 2.1 4.6 6.8 8.5 12
85 0.6 2.4 5.1 745 9.§ 13
0 0.7 2.9 5.8 8.4 1! 15
95 3.5 7.0 9.9 13 17
99 1.4 5.4 8.4 14 18 21

Parameter: f 1 5 10 15 20 25

70 0.030 0.12 0.25 0.39 0.54 0.71
75 0.036 0.14 0.27 0.43 0.62 0.80
80 0.041 0.15 0.31 0.50 0.68 0.99
8$ 0.045 0.17 0.27 0.87 0.76 1.1
0 0.055 0.20 0.43 0.66 0.91 1.3
95 0.079 0.26 0.51 0.80 1.3 1.6
9 0.10 0.37 0.70 13 1.9 2.2

All numbers are in % except the uncertainties on /,; see text.

TABLE 4
Expected uncertainties on fitted parameters for the range 1%-50% as a function of

confidence level (vertically) and error on historical data (horizontally).
Parameter: M 1 5 10 15 2 25

70 1.2 1 17 23 29
75 1.4 5.5 12 19 26 32
80 1.8 6.4 14 22 29 36
85 2.1 7.3 16 25 36 42
90 2.6 8.8 18 29 42 8
95 3.1 11 21 39 56 66
9 4.6 22 30 55 150 110

Parameter: a I 5 10 15 20 25

70 0.4 1.6 3.2 5/2 6.3 7.9
75 0.4 1.7 3.7 6.0 7.1 8.8
80 0.5 1.9 4.2 6.8 77 9.8
85 0.7 2.3 4.7 1.5 8.6 i0 0.7 2.6 5.4 8.4 9.9 12
95 0.9 3.3 6.2 9.9 12 14
9 1.4 $.4 8.3 13 16 21

Parameter: f, 1 $ 10 15 20 25

70 0.022 0.088 0.20 0.28 0.38 0.45
75 0.026 0.10 0.21 0.33 0.44 0.50
80 0.030 0.11 0.24 0.36 0.49 0.55
85 0.036 0.13 0.27 0.41 0.55 0.650 0.044 0.15 0.30 0.48 0.65 0.73
95 0.058 0.19 0.35 0.62 0.79 0.89
99 0.076 0.37 0.51 0.84 1.4 1.2

5.

numbers are in % except the uncertainties on ¢,; see text.
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TABLE 5

Expected uncertainties on fitted parameters for the range 1%-60% as a function of
confidence level (vertically) and error on historical data (horizontally).

Parameter: M i 5 10 15 20 2s

70 0.8 3.8 7.4 11.0 16.0 21.0
75 | 4.1 8.1 13.0 18.0 24.0
0 1.3 4.8 9.1 14.0 20.0 27.0
85 1.4 5.5 10.0 16.0 23.0 30.0
0 1.7 6.6 12.0 19.0 29.0 36.0
95 2.4 7.9 15.0 21.0 44.0 44.0
9 3.3 10.0 19.0 29.0 §2.0 65.0

Parameter: a 1 5 10 5 20 25

70 0.3 1.5 3.0 4.3 6.2 79
75 0.4 1.7 3.5 4.7 6.8 8.8
0 0.4 1.9 3.8 5.2 7.5 9.8
85 0.5 2.2 4.4 6.0 8.6 11.0
90 0.7 2.4 4.8 6.7 9.6 12.0
95 0.9 3.2 $.7 7.9 1.0 13.0
99 1.2 43 7.7 11.0 14.0 17.0

Parameter: ¢, 1 5 10 15 20 25

70 0.016 0.072 0.15 0.19 0.29 0,39
75 0.018 0.081 0.17 0.21 0.33 0.45
80 0.022 0.091 0.18 0.26 0.37 0.49
85 0.025 0.11 0.2) 0.30 0.41 0.55
90 0.029 0.13 0.24 0.34 0.51 0.67
95 0.040 0.15 0.28 0.40 0.66 0.77
9 0.060 0.19 0.36 0.50 0.84 0.96

All numbers are in % except the uncertainties on /,; see text.

TABLE 6

Expected uncertainties on fitted parameters for the range 1%-70% as a function of
confidence level (vertically) and error on historical data (horizontally).

Parameter: M 1 5 10 15 20 25

70 0.8 2.5 5.1 9.2 11.0 14.0
75 0.9 2.8 5.6 10.0 12.0 16.0
0 1.0 3.4 6.6 11.0 13.0 18.0
85 1.2 3.8 7.5 13.0 15.0 20.0
0 1.5 4.3 8.5 14.0 16.0 22.0
95 1.9 5.6 9.8 16.0 20.0 25.0
9 2.8 75 15.0 21.0 28.0 30.0

Parameter: a 1 5 10 15 20 25

70 0.3 1.5 2.7 41 5.4 6.9
75 0.4 1.6 3.0 4.4 6.1 7.6
0 0.5 1.7 3.3 5.1 6.7 8.5
85 0.6 2.0 3.8 5.8 7.7 9.6
0 0.7 2.3 4.4 6.7 8.7 11.0
95 0.9 2.8 5.0 79 11.0 12.0
9 1.2 3.6 6.7 11.0 14.0 16.0

Parameter: f, 1 5 10 15 20 25

70 0.015 0.052 0.11 0.17 0.22 0.28
75 0.017 0.059 0.12 0.19 0.25 0.32
80 0.030 0.073 0.13 0.21 0.29 0.36
85 0.023 0.084 0.15 0.25 0.31 0.40
0 0.027 0.094 0.17 0.38 0.35 0.44
95 0.040 0.11 0.21 0.32 0.42 0.50
9 0.058 0.16 0.28 0.46 0.53 0.66

All numbers are in % except the uncertainties on /,; see text.



TABLE 7
Expected uncertainties om fitted parameters for the range 1%-80% as 9 function of

confidence level (vertically) and error on historical data (horizontally).
Parameter: M 1 5 10 15 20 25

70 0.5 1.9 3.9 5.1 8.1 8.9
75 0.6 2.1 4.4 5.5 9.0 9.60 0.7 2.4 4.8 6.2 9.8 11.0
85 0.8 2.8 5.5 7.1 12.0 13.00 Ll 3.3 6.3 9.1 13.0 16.0
95 1.3 4.0 7.6 11.0 16.0 18.09 2.2 5.6 9.1 15.0 21.0 31.0

Parameter: a 1 5 10 1$ 20 25

70 0.3 1.3 2.4 3.7 5.4 5.9
75 0.3 1.4 2.6 4.2 5.8 6.4
80 0.5 1.6 3.0 4.6 6.4 71
85 0.5 1.7 3.4 5.0 71 790 0.6 2.0 3.9 $.9 3.3 8.7
95 0.8 2.4 4.7 7.5 9.9 10.09 1,2 3.4 5.6 8.7 12.0 15.0

Parameter: ¢, 1 5 10 15 20 25

0.011 0.042 0.080 0.12 0.18 0.18
75 0.013 0.048 0.090 0.13 0.19 0.210 0.014 0.053 0.099 0.15 0.22 0.24
85 0.017 0.059 0.11 0.16 0.25 0.28
ww 0.023 0.067 0.13 0.19 0.28 0.32
95 0.029 0.083 0.15 0.22 0.34 0.36
99 0.056 0.12 0.19 0.29 0.40 0.54

All numbers are in % except the uncertainties on f,; é text.

TABLE 8
Expected uncertainties on fitted parameters for the range 1%-90% as a function of

confidence level (vertically) and error on historical data (horizontally).
Parameter: M 1 5 10 15 20 25

70 0.3 1.4 2.9 4.2 6.0 71
75 0.4 1.5 3.2 4.6 7.1 7.8
80 0.5 1.9 3.5 $.2 8.1 8.3
85 0.5 2.2 4.0 6.1 8.7 9.90 0.6 2.5 4.7 7.0 10.0 11.0
95 09 3.2 5.8 8.6 12.0 14.0
99 1.5 4.6 8.6 12.0 16.0 20.0

Parameter: a 1 5 10 15 20 5
70 0.2 1.2 2.3 3.4 4.7 5.4
75 0.3 1.3 2.5 3.8 $.1 6.1
80 0.3 1.4 2.8 4.4 5.6 7.0
85 0.4 1.5 3.1 4.9 6.0 7.70 0.5 1.9 3.5 $.6 7.0 8.4
95 0.6 2.2 4.I 6.3 8.3 9.99 1.0 3.3 5.4 8.6 10.0 14.0

Parameter: f, 1 $ 10 15 20 25

70 0.008 0.031 0.059 0.093 0.12 0.14
75 0.009 0.034 0.067 0.10 0.14 0.160 0.010 0.037 0.073 0.11 0.16 0.19
85 0.013 0.044 0.083 0.12 0.17 0.21
90 0.014 0.050 0.094 0.14 0.20 0.23
95 0.018 0.064 0.11 0.17 0.24 0.289 0.025 0.082 0.16 0.23 0.29 0.35

All numbers are in % except the uncertainties on f,; see text.
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TABLE 9
Expected uncertainties om fitted parameters for the range 1%-99% as a function of

confidence level (vertically) and error on historical data (horizontally).
Parameter: M 5 10 15 20 2S

70 1.4 2.9 4.2 6.0 71
75 1.5 3.2 4.6 7.0 78
0 1,9 3.5 5.2 7.8 8.5
85 2.2 4.0 6.1 8.7 9.9
0 2.5 4.7 7.0 9.7 11.0
95 3.2 5.8 8.6 11.0 14.6
9 4.4 8.6 12.0 16.0 18.0

Parameter: a 5 10 15 20 25

70 0.9 1.9 2.9 3.7 4.7
75 1.1 2.1 3.3 4.2 5.0
80 1.2 2.3 3.5 4.6 5.5
85 1.4 2.7 3.9 $.2 6.1
90 1.5 3.0 4.4 6.0 7.0
95 2.0 3.7 5.4 7.1 8.1
9 2.6 5.1 TA 9.5 10.0

Parameter: 5 10 15 20 25

70 0.020 0.041 0.058 0.081 On
75 0.022 0.045 0.064 0.089 0.12
0 0.025 0.049 0.071 0.098 0.13
85 0.028 0.058 0.080 0.11 0.14
0 0.034 0.064 0.089 0.13 0.16
95 0.041 0.077 0.1 0.15 0.19
9 0.057 0.096 0.14 0.21 0.24

bo

All numbers are in % except the uncertainties on ¢,; see text.

q(t) in the range of 1% to 40% of M

q(t) in the range of 1% to 90% of M
q(t) in the range of 1% to 99% of M

For each time bin, statistical fluctuations were superimposed to simulate the inherent
uncertainties on historical data. These fluctuations were generated according to a normal
distribution around the theoretical value, with o varying flatly between 0% and 30%.

e a Gaussian 91(0,c) with zero the average and o the standard deviation.
That is, & = qi + €q; where q; the theoretical value for time bin i from equation (3) and

Fig. 2. distribution, equa-
tion (2), for the range 1%-50%.
The cut applied is shown.
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M

5% 10% 18% 20% 258

Error on datz
(a)

The life cycle curves thus obtained were subsequently integrated, producing the
S-curve sections to be fitted. In this way we ensured that the statistically independent
errors introduced on each time bin would be correctly accounted for in the cumulated
S-curve representation.

A total of 33,693 different sections of S-curves were generated in this manner, evenly
spread among the nine different time span ranges. The fits that followed were carried
out by minimizing the of equation (2). A function minimization software package
called MINUIT and developed at CERN [6] was used, providing values for M, a and ¢,
for each case. In addition the per degree of freedom was obtained.

Results
A typical x?-distribution is shown in Figure 2, for the range 1%-50%. The few very

high values of y? on the tail are attributed to limitations of the function minimization
software package for rare configurations of data points. A cut was applied, eliminating
fits with very large x' and reducing the data sample by less than 1%. The results presented
below were minimally affected by this cut.

The parameters M, a and f¢, recovered through the fits show no systematic deviation
from the true values used in generating the data. Figure 3 shows typical distributions
for the parameters of the range 1%-50%. Even though a long tail on the M distribution
biases the mean toward somewhat higher values, the median, which is more relevant in
the determination of the confidence level, was found to be bias-free in all cases. Conse-
qucntly, no systematic corrections arc neccssary to thc fitted valucs.

For each range-nine in total- we present in tables I to IX the expected error on
each of the parameters M, a and ¢, as a function of the confidence level and statistical
error of the data points. The expected error (EE) for a given parameter is defined as half
the confidence interval, i.e.,
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Error on data
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Error on data
(c)

Fig. 4. Boundaries of 10% in the range 1%-20% as a function of error on the data for M, a and
ta in (a), (b) and (c) respectively; see text for explanations.
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M

1

5% tos 15% 20%

Error 'on data
(a)

EEc = (Max - Min)/2
so that the probability that the parameter value falls betweenMin and Max is equal to CL.

In the general case where M and a are different than 1, these errors correspond to
percentages. The units of parameter ¢, are defined as: (total historical range)/20. Then
the interpretation of these errors is the following: Mra = M(i + EEc) with confidence
level CL.

Example A fit on yearly historical data of supertanker construction gives M = 115.
The historical period stops at 80 ships and we estimate an uncertainty on the reported
yearly construction of 5%. The range thus defined is 80/115 = 70%. From table VI we
obtain the uncertainty on M, namely M = 115 + 4.3% with 90% confidence level.

For complementary use and qualitative understanding, contour plots corresponding
to Tables 1, 5 and 9 are also given in Figures 4 to 6. For each parameter we indicate
with dots the values obtained through the fits as a function of the uncertainty on the
data. Solid lines are drawn in such a way as to contain 10% of the points between adjacent
lines. The central line indicates the median. It was in this way that confidence levels
were determined.

Finally, we address the question of correlations between the three parameters. The
scatter plots of Figures 7, 8 and 9 show typical cases some with evidence of a strong
nonlinear correlation (Figure 7), while others show no visible correlation at all (Figure
9). Clearly, the larger the range, i.e., the bigger the fraction of the S-curve covered by
the historical data, themore accurate the parameter determination and the less visible the
correlation between the uncertainties of the parameters. Correlations become increasingly
important as the range is reduced.

The presence of strong correlations allows the possibility of "what-if" scenarios to
be carried out independently of the actual fits. From Figure 7(a), for example, we can
see that for the same set of historical points, if a were to decrease by 5%, passing from
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Error on data
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Fig. 5. Boundaries of 10% in the range 1%-50% as a function of error on the dsta for M, a and
fy in (2), (b) and (c) respectively; see text for explanations.
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M
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Error on dati
(a)

1.0 to 0.95, the corresponding increase in M may be as high as 80%, whereas a similar
increase in would result in a lesser decrease for M.

Conclusions
S-curve fitting can be meaningfully applied whenever the historical data cover a fair

fraction (minimum of 20%) of the full range of an S-curve. Points on the two extremities,
i.e., below ~5% or above ~95% of the full range should not be expected to fit well.
Minimization of a y? is a good approach to determine the three parameters defining the
S-curve. Uncertainties for the values found for these parameters can be looked up in the
tables and graphs provided in the previous section as a function of the error on the historical
data and the desired confidence level.

Correlations between the uncertainties of the three parameters are important, the
more so the smaller the available range of the S-curve under study. They can be used
to play "what-if" games without having to do the fits, as long as it is not too late (the
case of an almost complete S-curve). For example, they may offer an explanation as to
the case of "child prodigies," so promising in their early life by their fast rate of growth
but often disappointing by their modest final level.

The implication of these correlations can go very far. If we were to interfere with
the growing process, e.g., decrease the rate of growth a- easily done in industry, hormon-
ally done in biology -the probable effect would be an increase of M and an increase of
ft, as long as, whatever the intervention, it was done "adiabatically" so as not to disturb
the underlying logistic law. According to French folklore, "Qui veux voyager loin ménage
sa monture," which means, "He who wants to travel far spares his horse."

In general, S-curve fitting, a natural and fundamental approach to forecasting, is
more reliable than suspected. We can see for example from Table 4 that historical data
covering the first half of the S-curve with estimated 10% errors per data point will yield
a value for the final maximum, accurate to within 20% with 95% confidence level. This
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can be of invaluable importancewhen dealing with processes forwhich the finalmaximum
has only been wildly speculated upon up to now.
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Appendix

STATISTICS FOR LOGISTIC GROWTH
Let Q(#) be a random variable describing a population at time It follows that Q(t)

must be discrete and finite, limited by a final value M, the niche capacity. Let g(t) be an
observed value of O(%). If the remaining M - individuals are equally likely, then
the differential increment at time ¢, defined as

(dQ(O)dt = Ot + dd) - AN
will obey a binominal law @(M - g(d,
where A(f)dt is the probability of appearance. This probability is proportional to dt, and
the proportionality coefficient, A(f), represents some kind of "fertility" or capability to
fill the niche and is in general a function of time.

Knowing the probability law for dQ(#) when Q() = q(f, and assuming that O(4
obeys a binominal law eM, we can show that dQ(') will obey the binominal
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Fig. 7. Scatter plots for the range 1%-20% of one parameter against the other as determined by
the fits, (a) M vs a, (b) M vs %, (c) @ vs f,.
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G(M, MA(L - AD)ds) and that Q(t + dt) = Q(t) + dQ{é) will obey the binominal
@(M, ft + df).

The parameter = E(Q(#))/M represents the expected fraction of the niche occu-
pied at time t. It follows that f will be a solution of the differentia] equation

df = fie + at - ft = - pat

For t > - oo, O(t) becomes certain (Q(t) = 0), thus binominal. The above inductive
reasoning will then show that Q(t) is binominal everywhere and if we take the growth
proportional to the size, namely Af{(4) = a/{d), then we arrive at the Voltera equation

af= fl - fdt
with the solution

1

1+S=

t, being an integration constant.
We then have for the expectation and variance of Q(a)

ME(Q()) = Mf =

and

M
(1 + + e=Hin)

= ~ A) =

if M is large and O « q(t) « M, then Q(t) is practically Gaussian and
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Fig. 8. Scatter plots for the range 1%-50% of one parameter against the other as determined by
the fits. (a) M vs a, (b) M vs f,, (c) @ vs fo.
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(a)

u = = MANY
=

- AG)

obeys a x? distribution law with n - 3 degrees of freedom.
At the extremities, Q(¢) is distributed according to Poisson probability law rather

thanGaussian, and themost probable observed value becomes g = Oorg = M. Therefore,
in order to stay within the Gaussian approximation, we must avoid small and large f.
This is commonly applied as a 10% rule, i.e., excluding the regions of f< 10% or f> 90%.
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Fig. 9. Scatter plots for the range 1%-99% of one parameter against the other as determined by
the fits. (a) M vs a, (b) M vs fo, (c) & VS fo.
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